

Comparison and analysis of space and temporal frequency, and, spatial wavenumber and temporal frequency (e.g., P-V_z) domain approaches of Green's theorem de-ghosting techniques: Implications for 3D de-ghosting

> Jing Wu San Antonio, Texas

> > May. 1st, 2013

Key Points

- In 3D acquisition, the data in cross-line are typically characterized with sparse sampling and narrow aperture compared to in-line direction;
- Compared to spatial wavenumber and temporal frequency domain (e.g., P-V_z) approach, Green's theorem de-ghosting method achieved in space and temporal frequency domain shows the advantages of producing effective result and boosting low frequency energy.
- Numerical comparisons
 - 1) Spatial sampling interval
 - 2) Aperture

Outline

- Introduction and Motivation
- Theoretical Analysis
- Numerical Analysis
 - **o** Spatial Sampling Interval
 - o Aperture
- Conclusion

Motivation

- Ghosts:
 - (1) Cause notches in the frequency spectrum, especially for deep water acquisition, like OBC;
 - (2) Reduce the resolution, increase the uncertainty of inversion and interpretation.
- For our group, we wish to use isolated data for each processing step in order to get a more satisfactory result.

Introduction

Weglein et al. (02), Zhang and Weglein (05, 06); Zhang (07), Mayhan(12, 13):

Green's theorem deghosting method

- Space and temporal frequency domain
- Spatial wavenumber and temporal frequency domain

Introduction

Weglein et al. (02), Zhang and Weglein (05, 06); Zhang (07), Mayhan(12, 13):

Green's theorem deghosting method

- Space and temporal frequency domain
- Spatial wavenumber and temporal frequency domain

So question is:

Are they equivalent except calculated in different domains ?

Outline

- Introduction and Motivation
- Theoretical Analysis
- Numerical Analysis
 - **o** Spatial Sample Interval
 - Aperture and Edge Effect
- Conclusion

Theoretical Analysis

• Green's Theorem de-ghosting $(x-\omega)$

- No assumption $P'_{R}(x, z, x_{s}, z_{s}, \omega) = \int_{m.s.} (P(x', z', x_{s}, z_{s}, \omega) \nabla' G_{0}^{d}(x, z, x', z', \omega) - G_{0}^{d}(x, z, x', z', \omega) \nabla' P(x', z', x_{s}, z_{s}, \omega)) \cdot nds'$

- $-P'_{R}$ the receiver side de-ghosted data;
- P the pressure data;
- ∇P the gradient of pressure data;
- G_0^d the causal Green's function;
- (x', z') point on measurement surface; (x, z) prediction location;
- $-(x_s, z_s)$ source location, ω circular frequency.

Theoretical Analysis

• Green's Theorem de-ghosting $(k_x - \omega)$

- Assume the acquisition geometry is **horizontal**

$$P'_{R}(x, z, x_{s}, z_{s}, \omega) = \frac{1}{2} [P(k_{x}, z, x_{s}, z_{s}, \omega) - \frac{1}{ik_{z}} \frac{dP}{dz}(k_{x}, z, x_{s}, z_{s}, \omega)]$$

- $-P'_{R}$ the receiver side de-ghosted data;
- P the pressure data;
- $-\frac{dP}{dz}$ the vertical derivative of pressure;
- k_x horizontal wavenumber; k_z vertical wavenumber;
- -(x, z) prediction location; (x_s, z_s) source location,
- ω circular frequency.

If acquisition geometry is horizontal, Green's theorem de-ghosting methods in these two different domains are theoretically equivalent.

If acquisition geometry is horizontal, Green's theorem de-ghosting methods in these two different domains are theoretically equivalent.

Even though geometry is horizontal, for cross-line, because of sparse spatial sampling and narrow aperture, spatial Fourier Transform will encounter difficulties to give a precise result.

Outline

- Introduction and Motivation
- Theoretical Analysis
- Numerical Analysis
 - **o Spatial Sampling Interval**
 - Aperture
- Conclusion

Outline

- Introduction and Motivation
- Theoretical Analysis
- Numerical Analysis
 - **o Spatial Sampling Interval**
 - Aperture
- Conclusion

Numerical Analysis

-----Spatial Sampling Interval

- In order to prevent alias, the sampling interval should satisfy
- Since $\Delta x \le 1/2k_{\max}$ $\Delta t \le 1/2f_{\max}$ $k_{\max} = f_{\max}/c$
- Then $\Delta x \le c / 2f_{\max}$
- If not, alias will appear in the data and contaminate the result. So we need low-pass filtering before de-ghosting.

Velocity model

Keep the aperture of 2400m

Increase spatial sampling interval gradually: 3m - 12m - 30m - 60m - 100m

To reduce the space alias, apply low pass filter before calculation.

Aperture: 2400m Spatial sampling interval: 3m

Spatial sampling interval: 3m

Spatial sampling interval: 3m

Spatial sampling interval: 12m (low cut filter: 60Hz)

Spatial sampling interval: 12m (low cut filter: 60Hz)

Spatial sampling interval: 30m (low cut filter: 25Hz)

Spatial sampling interval: 30m (low cut filter: 25Hz)

		k _x - ω domain result	x - ω domain result
Spatial Sampling	Dense (e.g. 3m,12m)	Ideal	Ideal
	Intermediate (e.g. 30m,60m)	Has residual	Satisfactory
	Sparse (100m)	Has residual Worse	Has residual Better
Frequency spectrum			Boosts low frequency energy

Outline

- Introduction and Motivation
- Theoretical Analysis
- Numerical Analysis
 - **o** Spatial Sampling Interval
 - Aperture
- Conclusion

Numerical Analysis

Numerical Analysis

Keep the spatial sampling interval of 3m

----- Aperture

Reduce aperture gradually: 2400m - 300m - 150m - 75m - 45m

To reduce the edge effect, apply taper at far offset before calculation.

Aperture: 2400m

Aperture: 2400m

Aperture: 300m

Aperture: 300m

Aperture: 150m

Aperture: 150m

Aperture: 75m

Aperture: 75m

Aperture: 45m

Aperture: 45m

		$k_x - \omega$ domain result	x - ω domain result
Aperture	Wide (e.g. 2400m)	Ideal	Ideal
	Intermediate (e.g.300m,150m)	Has residual	Satisfactory
	Narrow (75m, 45m)	Has residual Worse, artifacts	Has residual Better
Frequency spectrum			Boosts low frequency energy

Outline

- Introduction and Motivation
- Theoretical Analysis
- Numerical Analysis
 - **o Spatial Sample Interval**
 - Aperture
- Conclusion

Key Points and Conclusion

- For dense spatial sampling and wide aperture (e.g., in-line data),
 Green's theorem de-ghosting techniques in k_x ω and x ω domains both have ideal results;
- For sparse spatial sampling and narrow aperture (e.g., cross-line data), compared to $k_x \omega$ domain, the approach in x ω domain produces a better result;
- Green's theorem de-ghosting method in $x \omega$ domain shows its advantage in boosting low frequencies.

Reference

- Weglein, Arthur B. et al. New approaches to de-ghosting towed-streamer and ocean-bottom pressure measurements. SEG Expanded Abstracts, 2002: 1016~1019.
- Amundsen, L. Wavenumber-based filtering of marine point-source data. *Geophysics* 58, 1993: 1335~1348.
- Mayhan, J. D. et al. Green's theorem derived methods for preprocessing seismic data when the pressure P and its normal derivative are measured. SEG Expanded Abstracts, 2012: 2722~2726.
- Zhang, Jingfeng and Arthur B. Weglein. Extinction theorem de-ghosting method using
- towed streamer pressure data: Analysis of the receiver array effect on deghosting and subsequent free surface multiple removal. SEG Expanded Abstracts, 2005: 2095~2100.
- Zhang, Jingfeng and Arthur B. Weglein. Application of extinction theorem de-ghosting method on ocean bottom data. SEG Expanded Abstracts, 2006: 2674~2678.

